Skip to contents

Settings are: metric, linkage, k. for details see the vignette on makePlots

Usage

makeResults(
  space1,
  settings,
  cov = NULL,
  covInv = NULL,
  exp = NULL,
  space2 = NULL,
  space2.cov = NULL,
  space2.covInv,
  space2.exp = NULL,
  user_dist = NULL,
  getCoordsSpace1 = normCoords,
  getCoordsSpace2 = normCoords,
  getScore = NULL
)

Arguments

space1

dataframe of variables in cluster space

settings

list specifying parameters usually selected in the app

cov

covariance matrix for space 1

covInv

inverse covariance matrix for space 1

exp

reference point in space 1

space2

dataframe of variables in linked space

space2.cov

covariance matrix for space 2

space2.covInv

inverse covariance matrix for space 2

space2.exp

reference point in space 2

user_dist

user defined distances

getCoordsSpace1

function to calculate coordinates in space 1

getCoordsSpace2

function to calculate coordinates in space 2

getScore

function to calculate scores and bins

Value

list of results to be passed to makePlots

Examples

r <- makeResults(space1 = Bikes$space1, settings = list(k = 4,
   metric = "euclidean", linkage = "ward.D2"), cov = cov(Bikes$space1),
   space2 = Bikes$space2, getScore = outsideScore(Bikes$other$res, "Residual"))
makePlots(space1 = Bikes$space1, settings = list(plotType = "Obs",
   x = "hum", y = "temp", obs = "A1"), cov = cov(Bikes$space1),
   space2 = Bikes$space2, getScore = outsideScore(Bikes$other$res, "Residual"),
   results = r)